Exam Answer Detection using Proposed Nested Loop Pixel Checking Based on Image Processing Sistem Deteksi Lembar Jawaban Ujian dengan Menggunakan Metode Nested Loop Pixel Checking yang Diusulkan Berbasis Pengolahan Citra Digital

Main Article Content

Reza Augusta Jannatul Firdaus
Indana Lazulfa
Bayu Putra


Tracking object is one of the most discussed problems in digital images processing. The objectives of tracking objects include the counting, correction, classification and so on. This study discusses how tracking objects, in this case the multiple choice chosen by students, is carried out on the exam answer sheet using the proposed nested loop pixel checking method. The answer sheet used here is the answer sheet for the exam from SMK Khoiriyah Hasyim Tebuireng Jombang because each school has a different exam answer sheet format so that the coordinate parameters of each answer sheet between schools must be different. Before the nested loop pixel checking method, preprocessing was carried out first after taking the image, namely cropping the Region of Interest, conversion to grayscale, filtering, and edge detection using the adaptive Canny edge detection method. The process of nested loop pixel checking is done by iterating successively with steps per answer option, per number of answers, and per column. In addition, a special case is given to find out whether this proposed method works as desired. The results show that this method can track answers for both normal and special cases.

Article Details



[1] Akbar, Ronny Makhfuddin dan Endang Setyati. 2015. “Penilaian Otomatis Lembar Jawaban Komputer (LJK) Secara Real Time Dengan Memanfaatkan Webcam”. Seminar Nasional “Inovasi dalam Desain dan Teknologi” – IdeaTech. 334-341
[2] Derisma. 2016. “Perbandingan Kinerja Metode Deteksi Tepi pada Pengenalan Objek Menggunakan OpenCV”. Jurnal Informatika Mulawarman. Vol. 11, 17-21
[3] Kirana, Mira Chandra, dkk. 2017. “Penerapan Metode Canny dalam Koreksi Lembar Jawaban Komputer Untuk Try Out”. Prosiding SENTIA, Vol. 9 Malang, 9-14.
[4] Rafael, C., Gonzales, Ricard, E., Woods. 2002. “Digital Image Processing”. Tom Robbins Publisher. United States of America.
[5] Sitorus, Syahriol, dkk. 2006. Pengolahan Citra Digital. Medan : USU Press.
[6] Solomon, C., Breckon, T. 2013. “Fundamental of Digital Image Processing”. John Wiley and Sons, Ltd. Chichester, UK.
[7] Zhou, Ping, dkk. 2011. “An Improved Canny Algorithm for Edge Detection”. Journal of Computational Information System. Vol. 75 (5). Hal 1516-1523.