Hybrid Machine Learning for Sentiment Analysis of Dana Application Reviews


Hybrid Machine Learning untuk Analisa Sentimen Ulasan Aplikasi Dana


  • (1)  Adinda Nazalia Hadianti            Program Studi Informatika, Universitas Muhammadiyah Sidoarjo  
            Indonesia

  • (2) * Mochamad Alfan Rosid              
            Indonesia

  • (3)  Nuril Lutvi Azizah            Program Studi Teknik Informatika, Universitas Muhammadiyah Sidoarjo  
            Indonesia

  • (4)  Novia Ariyanti            Program Studi Informatika, Universitas Muhammadiyah Sidoarjo  
            Indonesia

    (*) Corresponding Author

Abstract

This research evaluates user sentiment towards the Dana application on the Google Play Store, where in early 2024 1,000 reviews were collected. Of these reviews, 72% (720 reviews) were negative, while 28% (280 reviews) were positive. This situation arose because the Dana application was under maintenance during the dataset collection period. This research utilizes Support Vector Machine (SVM), Naive Bayes, and Hybrid methods for sentiment classification. The evaluation results show an accuracy of 92.62% for SVM, 88.62% for Naive Bayes, and 93.88% for Hybrid, where the Hybrid method shows the best performance in predicting user sentiment. This research makes an important contribution to the development of sentiment classification algorithms and provides insight for application developers to understand user perceptions during the repair period. It is hoped that the research results can help improve the quality of the Dana application and similar applications in the future.

Highlights:

  • Performance: The Hybrid Machine Learning method outperformed SVM and Naive Bayes, achieving the highest accuracy of 93.88%.
  • User Feedback: Majority of reviews (72%) were negative due to application maintenance issues during the dataset collection.
  • Future Development: Recommendations include using larger datasets and advanced NLP techniques like BERT for better sentiment analysis.

Keywords: Dana App, Hybrid Machine Learning, Sentiment Analysis

References

Atmajaya, D., Febrianti, A., & Darwis, H. (2023). Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter. Indonesian Journal of Computer Science, 12(4), 2173–2181. https://doi.org/10.33022/ijcs.v12i4.3341

Helmayanti, S. A., Hamami, F., & Fa’rifah, R. Y. (2023). Penerapan Algoritma Tf-Idf Dan Naïve Bayes Untuk Analisis Sentimen Berbasis Aspek Ulasan Aplikasi Flip Pada Google Play Store. Jurnal Indonesia : Manajemen Informatika Dan Komunikasi, 4(3), 1822–1834. https://doi.org/10.35870/jimik.v4i3.415

Herlinawati, N., Yuliani, Y., Faizah, S., Gata, W., & Samudi, S. (2020). Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine. CESS (Journal of Computer Engineering, System and Science), 5(2), 293. https://doi.org/10.24114/cess.v5i2.18186

Hidayat, M. N., & Pramudita, R. (2024). Analisis Sentimen Terhadap Pembelajaran Secara Daring Pasca Pandemi Covid-19 Menggunakan Metode IndoBERT. INFORMATION MANAGEMENT FOR EDUCATORS AND PROFESSIONALS : Journal of Information Management, 8(2), 161. https://doi.org/10.51211/imbi.v8i2.2719

Nofiyani, N., & Wulandari, W. (2022). Implementasi Electronic Data Processing Untuk meningkatkan Efektifitas dan Efisiensi Pada Text Mining. Jurnal Media Informatika Budidarma, 6(3), 1621. https://doi.org/10.30865/mib.v6i3.4332

Nugraha, D., & Gustian, D. (2024). Analisis Sentimen Penggunaan Aplikasi Transportasi Online Pada Ulasan Google Play Store dengan Metode Naive Bayes Classifier. KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 5(1), 326–335.

Nurian, A. (2023). Analisis Sentimen Ulasan Pengguna Aplikasi Google Play Menggunakan Naïve Bayes. Jurnal Informatika Dan Teknik Elektro Terapan, 11(3s1), 829–835. https://doi.org/10.23960/jitet.v11i3s1.3348

Setya Ananto, F., & Hasan, F. N. (2023). Implementasi Algoritma Naïve Bayes Terhadap Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store. Jurnal ICT : Information Communication & Technology, 23(1), 75–80.

Sinaga, F. J., Pratama, E., Prasetya, F., & Irsyad, H. (2023). Klasifikasi Opini Pengguna Aplikasi Bibit Pada Google Play Store Menggunakan Algoritma Naive Bayes. MDP Student Conference, 2(1), 10–16. https://doi.org/10.35957/mdp-sc.v2i1.4205

Solecha, K., & Irnawati, O. (2023). Komparasi Algoritma Support Vector Machine Dan Naïve Bayes Berbasis Particle Swarm Optimization Pada Analisis Sentimen Ulasan Aplikasi Flip. JIEET (Journal of Information Engineering and Educational Technology), 07(1), 10–15.

Sri Widagdo, A., Nuresa Qodri, K., Edi Nugroho, F. S., Akbar Rizky, N. P., Informasi, T., Kesehatan Dan Teknologi, F., & Muhammadiyah Klaten, U. (2023). Analisis Sentimen Mobil Listrik di Indonesia Menggunakan Long-Short Term Memory (LSTM). Jurnal Fasilkom, 13(3), 416–423.

Utami, N. W., & Eka Putra, I. G. J. (2022). Text Minig Clustering Untuk Pengelompokan Topik Dokumen Penelitian Menggunakan Algoritma K-Means Dengan Cosine Similarity. Jurnal Informatika Teknologi Dan Sains, 4(3), 255–259. https://doi.org/10.51401/jinteks.v4i3.1907

Vonega, D. A., Fadila, A., & Kurniawan, D. E. (2022). Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024. Journal of Applied Informatics and Computing, 6(2), 129–135. https://doi.org/10.30871/jaic.v6i2.4300

Yuniar, E., Utsalinah, D. S., & Wahyuningsih, D. (2022). Implementasi Scrapping Data Untuk Sentiment Analysis Pengguna Dompet Digital dengan Menggunakan Algoritma Machine Learning. Jurnal Janitra Informatika Dan Sistem Informasi, 2(1), 35–42. https://doi.org/10.25008/janitra.v2i1.145

Yunita, R., & Kamayani, M. (2023). Perbandingan Algoritma SVM Dan Naïve Bayes Pada Analisis Sentimen Penghapusan Kewajiban Skripsi. Indonesian Journal of Computer Science, 12(5), 2879–2890. https://doi.org/10.33022/ijcs.v12i5.3415

Picture in here are illustration from public domain image (License) or provided by the author, as part of their works
Published
2023-10-04
 
Section
Articles