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Abstract. Accurate modeling of high-frequency transmission systems requires 

efficient methods to represent dispersive and nonlinear effects. Traditional solvers 
like the Split-Step Fourier Method (SSFM) are accurate but computationally 

demanding. The Schrödinger-Type Transmission Line Equation (STLE) effectively 

models these systems, yet existing techniques struggle with inverse problems and 
limited data. Research on data-efficient and stable frameworks for STLEs remains 

limited. This study introduces a Physics-Informed Neural Network (PINN) to solve 
forward and inverse STLE problems by embedding physical laws into the training 

process. The model achieved a relative L² error ≤1×10⁻³ and identified dispersion 

(β₂) and nonlinearity (γ) coefficients with 1–3% error using ≤5% data. Gradient-
regularized losses and Fourier-enhanced inputs improve training stability and 

precision. The proposed approach enables reliable, data-efficient modeling of 

nonlinear transmission systems for advanced electromagnetic design. 

Keywords : Physics-Informed Neural Network, Schrödinger-type, split-step Fourier method, partial differential 
equation,transmission 

Abstrak. Modeling sistem transmisi frekuensi tinggi yang akurat memerlukan 
metode efisien untuk mewakili efek dispersif dan nonlinier. Solver tradisional seperti 

Split-Step Fourier Method (SSFM) akurat namun memerlukan komputasi yang 
intensif. Schrödinger-Type Transmission Line Equation (STLE) secara efektif 

memodelkan sistem ini, namun teknik yang ada kesulitan dalam menyelesaikan 

masalah invers dan data yang terbatas. Penelitian tentang kerangka kerja yang 
efisien dan stabil untuk STLE masih terbatas. Studi ini memperkenalkan Jaringan 

Saraf Terinspirasi Fisika (PINN) untuk menyelesaikan masalah maju dan invers STLE 
dengan mengintegrasikan hukum fisika ke dalam proses pelatihan. Model ini 

mencapai kesalahan L² relatif ≤1×10⁻³ dan mengidentifikasi koefisien dispersi (β₂) 

dan nonlinieritas (γ) dengan kesalahan 1–3% menggunakan ≤5% data. Kerugian 
yang diregulasi gradien dan masukan yang ditingkatkan Fourier meningkatkan 

stabilitas dan presisi pelatihan. Pendekatan yang diusulkan memungkinkan 
pemodelan yang andal dan efisien data untuk sistem transmisi nonlinier dalam 

desain elektromagnetik canggih. 

Kata Kunci : Jaringan Saraf Terinspirasi Fisika, tipe Schrödinger, metode Fourier langkah terpisah, persamaan 
diferensial parsial, transmisi 
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1. Introduction  

The rapid development of high-frequency 

transmission systems, encompassing 

optical fiber links and high-speed 

microwave and millimeter-wave 

interconnects, has intensified the demand 

for precise and computationally efficient 

models of dispersive and nonlinear 

propagation phenomena.  The nonlinear 

Schrödinger-type transmission line 

equation (STLE) precisely characterizes the 

behavior of electromagnetic signals in these 

media, demonstrating the evolution of the 

complex field envelope influenced by 

group-velocity dispersion (GVD) and self-

phase modulation (SPM).  For many years, 

traditional numerical solvers such as the 

finite-difference time-domain (FDTD) 

method [1], the finite-element method 

(FEM) [2], and the split-step Fourier 

method (SSFM) [3] have provided valuable 

insights.. But these methods often have 

high computational costs, depend on the 

mesh, and are hard to use for inverse or 

parameter-identification problems when 

measurements are few. 

The Schrödinger-type model is used in a lot 

of transmission applications. In optical 

fibers, it controls pulse broadening, soliton 

formation, and four-wave mixing [4]–[6]; 

in microwave integrated circuits, it models 

nonlinear dispersive wave propagation [7]; 

and in plasmonic and photonic crystal lines, 

it captures complex envelope dynamics 

under anomalous dispersion regimes [8], 

[9]. There are only a few cases where 

analytical solutions work (for example, 

fundamental solitons). This is why high-

accuracy numerical schemes like adaptive 

step-size SSFM [10], high-order Runge–

Kutta methods [11], and pseudospectral 

algorithms [12] were created. Even though 

these methods are well-established, they 

usually need finely discretized meshes and 

have trouble with inverse design or finding 

parameters that are different from each 

other. 

Physics-Informed Neural Networks 

(PINNs), introduced by Raissi et al. [13], 

have emerged as a promising method for 

solving PDEs by directly integrating the 

governing physics into the learning 

objective.  PINNs can learn the continuous 

solution space without having to break it up 

into pieces by punishing the PDE's residual, 

the boundary conditions, and the initial 

conditions.  PINNs have been useful for a 

lot of problems since they were first used, 

like fluid dynamics [14], electromagnetics 

[15], quantum mechanics [16], and 

nonlinear optics [17].  These networks have 

proven adept at generalization, noise 

resilience, and managing incomplete data 

and irregular domains.. 

Many studies have tried to make PINNs 

more useful by adding wave propagation 

and Schrödinger-type equations.  Chen et 

al. [18] employed PINNs on the 1D 

nonlinear Schrödinger equation, achieving 

accurate reconstruction of soliton 

dynamics.  Lu et al. [19] presented 

DeepXDE, a proficient PINN framework 

developed to handle complex boundary 

conditions for wave equations.  Yang and 

Karniadakis [20] introduced variational 

PINNs (VPINNs), which alleviate the 

inflexibility of high-order PDE learning by 

minimizing the weak form residual.  Peng 

et al. [21] and Mao et al. [22] demonstrated 

that PINNs can ascertain unknown 

coefficients in dispersive systems, such as 

dispersion length and nonlinear index, 

solely by analyzing noisy measurements.  

These advancements present innovative 

opportunities for the integration of machine 

learning with electromagnetic transmission 

modeling.. 

Nonetheless, challenges persist in 

employing PINNs for high-frequency 

dispersive issues.  Solutions of the 

Schrödinger type have an oscillatory nature 

that leads to gradient pathologies and phase 

errors in standard networks [23].  Long-

distance propagation also causes 

cumulative numerical dispersion, which 

can make training less stable [24].  To 
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address these challenges, researchers have 

created spectral PINNs that use Fourier 

features [25], SIREN-based networks that 

use sinusoidal activation functions [26], 

and adaptive loss weighting or gradient 

regularization methods [27] to balance the 

learning of multi-scale physical terms.  

Recent hybrid formulations, such as Fourier 

neural operators (FNOs) [28], neural 

spectral solvers [29], and quantum-inspired 

PINNs [30], demonstrate improved 

efficacy in accelerating PDE learning for 

wave and transmission systems.. 

This paper introduces a Physics-Informed 

Neural Network framework for solving the 

Schrödinger-Type Transmission Line 

Equation (STLE).  The proposed method 

establishes both forward and inverse 

problems, enabling precise reconstruction 

of the field and determination of the 

coefficients (dispersion and nonlinearity) 

in dispersive transmission environments.  

The network uses gradient-regularized loss 

to keep training stable when there are 

high-frequency oscillations and Fourier-

enhanced inputs to quickly capture spectral 

dispersion.  Comparative analyses utilizing 

the split-step Fourier method (SSFM) 

validate the accuracy and stability of the 

proposed approach.  The rest of the paper 

is organized like this: 

 Section 2 talks about the STLE's governing 

equations and the physical background.  

The proposed PINN formulation, which 

includes the loss design and training plan, 

is shown in Section 3.  In Section 4, there 

are numerical experiments and 

comparisons.  Section 5 talks about what 

can be added, what can't be added, and what 

the future holds.. 

2. Governing Equation and 

Transmission Context 

A PDE of Schrödinger-type partial 

differential equation can exactly 

characterize the propagation of high-

frequency electromagnetic or voltage 

signals through dispersive and nonlinear 

broadcasting media, such as optical fibers, 

coaxial cables, and microwave 

transmission lines.   This formulation is 

based on equations of Maxwell's and slowly 

changing envelope estimate (SVEA), 

which declares that the envelope of the 

signal changes slowly in relation to its 

carrier frequency [26]–[28]. Let ψ(x, t) 

symbolize the complex envelope of the 

electric field, voltage, or current along the 

transmission axis x at time t. The equation 

of Schrödinger-type transmission-line is 

inscribed similar this: 

j ∂ψ/∂t + (1/2) β₂ ∂²ψ/∂x² – γ |ψ|² ψ = 0

  (1) 

where j = √(–1) is the imaginary unit, β₂ is 

the group-velocity-dispersion (GVD) 

coefficient, and γ is the nonlinearity 

coefficient that comes from self-phase 

modulation.  The parameter β₂ describes 

how the propagation constant changes with 

frequency and controls how signals spread 

out over time in optical or electrical media 

[29], [30].  The coefficient γ takes into 

account changes in the refractive index of 

optical fibers that depend on intensity or 

changes in inductance and capacitance of 

electrical transmission lines that depend on 

voltage. Equation (1) follows directly from 

Maxwell’s curl relations: 

∇×E = –μ ∂H/∂t,  ∇×H = ε ∂E/∂t + J

    (2) 

Applying the quasi-TEM approximation 

for guided modes yields the telegrapher’s 

equations for voltage V(x, t) and current 

I(x, t): 

∂V/∂x = –L ∂I/∂t – R I,  ∂I/∂x = –C 

∂V/∂t – G V    (3) 

where L, C, R, and G are the per-unit-length 

inductance, capacitance, resistance, and 

conductance. Neglecting losses (R, G ≈ 0) 

gives the familiar wave equation: 

∂²V/∂x² = L C ∂²V/∂t²   

   (4) 
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Introducing a carrier-wave representation 

V(x, t) = ψ(x, t) exp[j (ω₀ t – β₀ x)]  and 

keeping higher-order terms under the 

SVEA gives us the dispersive–nonlinear 

form (1).  This link shows that when 

dispersion and nonlinearity are both 

present, both optical-fiber and electrical-

line propagation follow the same 

Schrödinger-type dynamics. 

 The first term, j ∂ψ/∂t, describes how the 

envelope changes over time. The second 

term, (1/2) β₂ ∂²ψ/∂x², controls group-

velocity dispersion, which makes the pulse 

spread or compress depending on the sign 

of β₂. The third term, –γ |ψ|² ψ, represents 

self-phase modulation, which causes phase 

shifts and waveform distortion that depend 

on the intensity.  When γ = 0, Equation (1) 

becomes a linear dispersive model. When γ 

≠ 0, the system can have soliton solutions 

that perfectly balance dispersion and 

nonlinearity. In the linear regime (γ = 0), 

the field can be expressed through its 

spectral components: 

ψ(x, t) = ∫ A(ω) exp[j (k(ω) x – ω t)] dω,  

k(ω) = β₀ + (1/2) β₂ (ω – ω₀)²  (5) 

This illustration depicts frequency-

dependent delay and pulse dispersion.  In 

the nonlinear regime (γ ≠ 0), the precise 

equilibrium between dispersion and 

nonlinearity results in a fundamental 

soliton:  

ψ(x, t) = η sech(η x) exp[j (η² t / 2)] 

    (6) 

where η depends on the optical/electrical 

power and the medium’s nonlinear 

coefficient. Such self-maintaining pulses 

have been verified experimentally in both 

optical fibers and nonlinear electrical 

lattices. 

For analysis and numerical learning, 

Equation (1) is often cast in dimensionless 

form by scaling x = Lₓ x′, t = T₀ t′, ψ = A₀ 

ψ′, with T₀ = Lₓ² / |β₂| and A₀² = |β₂| / (Lₓ² 

|γ|). Substitution gives: 

i ∂ψ/∂t + (1/2) σ ∂²ψ/∂x² – κ |ψ|² ψ = 0,  

σ = sign(β₂), κ = sign(γ)  (7) 

This normalized equation makes numerical 

scaling easier and is used directly in the 

residual calculations of Physics-Informed 

Neural Networks (PINNs). 

 Equations (1) and (7) together explain the 

basic physics of dispersive and nonlinear 

propagation, such as pulse broadening, 

soliton dynamics, and phase modulation in 

high-frequency transmission systems.  It is 

important to find β₂ and γ from limited 

measurements because real devices often 

show changes in these coefficients in space 

or the environment.  Traditional solvers, 

like the split-step Fourier or finite-

difference methods, work well for 

homogeneous media, but they don't work as 

well when there isn't much data or when the 

parameters change.  Putting the governing 

equation directly into a PINN framework 

makes it possible to get both the full field 

ψ(x, t) and its physical coefficients from 

incomplete data at the same time. This 

opens the door to strong forward and 

inverse modeling.  The next part shows the 

proposed PINN formulation for this 

purpose. 

3. PINN Formulation 

Physics-Informed Neural Networks 

(PINNs) provide a framework for solving 

partial differential equations without using 

a mesh. They do this by putting the 

governing physics directly into the neural-

network loss function.  A PINN learns the 

relationship between the independent 

variables and the unknown field by 

minimizing both data and physics residuals. 

This is different from creating dense 

numerical grids.  This method works best 

for problems with high-frequency 

transmission that are based on the 



October 2025 / Volume 9/ Issue 2 

Zahraa Fadhil H.et.al 
Schrödinger-Ty Schrödinger-Type Transmission Line 

Equation via Physics-Informed Neural Networks (PINNs) 

 

 

 
18 

 

Schrödinger-type equation we talked about 

earlier. 

 We can represent the field envelope as the 

complex function ψ(x, t) = u(x, t) + j v(x, t), 

where u and v are the real and imaginary 

parts.  The neural network receives spatial-

temporal coordinates (x, t) as inputs and 

produces the pair (u, v) as outputs.  The 

equation that governs  

j ∂ψ/∂t + (1/2) β₂ ∂²ψ/∂x² – γ |ψ|² ψ = 0

    (8) 

can be split into two real residuals: 

Rᵤ = ∂v/∂t + (1/2) β₂ ∂²u/∂x² – γ (u² + v²) v

    (9) 

(Rᵥ = –∂u/∂t + (1/2) β₂ ∂²v/∂x² + γ (u² + v²) 

u    10) 

The network parameters θ are optimized by 

minimizing the total loss function L, which 

combines physics residuals, 

initial/boundary constraints, and optional 

data terms: 

L = λₚ ( ‖Rᵤ‖² + ‖Rᵥ‖² ) + λᵢ ‖ψ(x, t₀) – 

ψ₀(x)‖² + λ_b ‖B[ψ]‖² + λ_d ‖ψ – ψ_m‖² + 

λ_g ‖∇θ Lₚ‖²    (11) 

where: 

– λₚ, λᵢ, λ_b, λ_d, λ_g are weighting 

coefficients, 

– ψ₀(x) is the initial condition at t = t₀, 

– B[ψ] enforces boundary conditions, 

– ψ_m represents available measurement 

data, and 

– the last gradient term acts as a small 

Tikhonov-like regularizer for smoother 

optimization . 

Modern deep-learning frameworks like 

PyTorch and TensorFlow can automatically 

find the derivatives (∂ψ/∂t, ∂²ψ/∂x²) without 

having to use explicit finite-difference 

schemes.  So, the training process directly 

applies the Schrödinger physics to 

randomly chosen collocation points inside 

the solution domain Ω = [xₘᵢₙ, xₘₐₓ] × [t₀, t₁]. 

 In forward problems, the dispersion β₂ and 

nonlinearity γ are fixed values, and the 

network learns ψ(x, t). 

 When it comes to inverse problems, β₂ and 

γ are treated as extra trainable variables 

(β₂*, γ*) that are optimized together with θ.  

This simultaneous learning enables 

parameter identification from sparse or 

noisy data. 

 All variables are normalized to the range [–

1, 1] to make the numbers more stable and 

easier to generalize.  In most training 

settings, there are 8 to 10 fully connected 

layers, each with 128 to 256 neurons and 

either tanh or SIREN (sinusoidal) 

activation functions.  Most of the time, the 

optimization happens in two steps: 

 (1) Adam optimizer with a learning rate of 

10⁻³ to 10⁻⁴ for coarse convergence; (2) L-

BFGS quasi-Newton refinement for high-

accuracy residual minimization. 

 Adaptive sampling of collocation points, 

utilizing either Latin-hypercube or residual-

based resampling, can expedite 

convergence by concentrating on areas 

exhibiting elevated physical error [51].  

When periodic boundary conditions are 

used, the loss function couples boundary 

pairs (x = –L, x = L) to make sure that both 

ψ and its derivative are continuous. 

 The trained PINN dose a clear, 

differentiable formula for ψ (x, t) that can 

be used or differentiated wherever in 

domain. By using the Poynting vector S = 

E × H, it can do post-processing like 

spectrum computation or energy-flow 

analysis. PINN lets for direct differentiation 

of physical parameters and works as a 

single solver for both forward propagation 

and inverse coefficient estimation in the 
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nonlinear transmission models. This is 

different from the traditional method split-

step Fourier method. 

4. Numerical Experiments 

and Results 

To confirm the proposed (PINN) 

background, a series of numerical tests 

were conducted for both forward and 

inverse problems for the Schrödinger-type 

transmission.  The experimentations were 

conducted to evaluate solution accuracy, 

resilience to noise, and the capacity to 

discern coefficients (β₂, γ) from incomplete 

data. 

The domain considered was x ∈ [–20, 20], 

t ∈ [0, 2], with normalized parameters 

unless otherwise stated. Three 

representative test cases were examined: 

1. Linear dispersive propagation (γ = 0). 

2. Nonlinear soliton propagation (β₂ < 0, γ > 

0). 

3. Inverse identification of (β₂, γ) from partial 

field measurements. 

The network used 9 hidden layers with 256 

neurons per layer, tanh activation, and the 

Adam → L-BFGS hybrid optimizer. 

Approximately 30 000 collocation points 

were uniformly sampled, with additional 2 

000 initial and 1 000 boundary points. Loss 

weights were set as 

λₚ = 1, λᵢ = 10, λ_b = 10, λ_d = 1, λ_g = 1 × 

10⁻⁵. 

Training converged within 45 000 epochs 

on an NVIDIA RTX 3090 GPU. 

4.1 Forward Problem – Linear 

Dispersive Case 

The first experiment tested the model with 

β₂ = 1, γ = 0, and Gaussian initial condition 

ψ(x, 0) = exp(–x² / 4). 

The reference solution was computed using 

the Split-Step Fourier Method (SSFM) 

with 2048 spatial points and time step Δt = 

1 × 10⁻³. 

The PINN accurately reproduced the 

dispersion-induced pulse broadening. 

Figure 1 illustrates the comparison 

between the analytical/SSFM solution and 

the PINN prediction for |ψ(x, t)| at several 

time instants. Both amplitude and phase 

distributions show excellent agreement. 

 

 

Figure 1: Linear dispersion — PINN vs 

SSFM 

Relative L² error: 6.2 × 10⁻⁴ 

Spectral RMSE: 8.5 × 10⁻⁴ 

Table 1 – Quantitative comparison for the 

linear dispersive case. 

Metric 
SSFM 

Reference 

PINN 

Result 

Relative 

Error 

Peak 

amplitude 
1.000 0.997 0.3 % 

Pulse 

width 

(FWHM) 

3.98 4.00 0.5 % 

Energy ∫ ψ ²dx 7.09 

4.2 Forward Problem – Nonlinear 

Soliton Propagation 
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In the second experiment, the parameters 

were β₂ = –1 and γ = 1, corresponding to a 

focusing nonlinear medium. The initial 

pulse was the fundamental soliton 

ψ(x, 0) = sech(x). 

The analytical solution of the nonlinear 

Schrödinger equation predicts a stationary 

soliton of constant shape and phase 

rotation. Figure 2 shows the PINN-

predicted amplitude |ψ(x, t)| and its perfect 

invariance over time. 

The PINN effectively taken both the self-

trapping performance and the periodic 

phase oscillation. 

 

Figure 2: Soliton propagation — PINN vs 

SSFM 

Table 2 – Comparison for nonlinear soliton 

propagation. 

Quantity Analytical PINN 
Relative 

Error 

Amplitude η 1.000 0.996 0.4 % 

Phase 

velocity η²/2 
0.500 0.503 0.6 % 

Conservation 

(∫ 
ψ ²dx) 2.00 

The relation L² error crossways the entire 

domain 1.1 × 10⁻³, representative the 

model’s ability to maintain both amplitude 

and phase reliability even for strongly 

nonlinear exchanges. 

4.3 Inverse Problem – Parameter 

Identification 

In the inverse case, β₂ and γ were treated as 

trainable parameters with unidentified 

values. Artificial data consisting of | ψ (x, t) 

| sampled at 5 % of collocation points were 

used. The correct values were β₂ = –1, γ = 

1. Training proceeded using the same 

configuration as before, but with the 

additional gradient updates for β₂ and γ. 

After convergence, the recovered 

parameters were: 

β₂* = –1.012 (error 1.2 % ), γ* = 1.028 

(error 2.8 % ). 

Addition 2 % Gaussian noise to the slightly 

increased data to make the errors 1.9 % and 

3.6 %, confirming robustness to noise 

corruption. 

Figure 3 offerings the evolution of the loss 

for (physics, data, and boundary) over 

training epochs. The physics loss controls 

primary learning, while data-based fine-

tuning stabilizes coefficient estimation. 

 

 

Figure 3: Training-loss evolution 

Table 3 – Inverse identification of 

dispersion and nonlinearity coefficients. 
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Paramet

er 

Tru

e 

Valu

e 

Predict

ed 

Absolu

te 

Error 

Relati

ve 

Error 

β₂ 

–

1.00

0 

–1.012 0.012 1.2 % 

γ 
1.00

0 
1.028 0.028 2.8 % 

 

4.4 Performance and Convergence 

Analysis 

The total training time for each case was 

approximately 42 minutes. Figure 4 shows 

the learning curves for total and physics 

losses, confirming stable convergence. 

The physics-based loss dominated during 

the initial 10 000 iterations, while the 

boundary and data terms refined the 

solution shape later. Table 4 summarizes 

global error statistics compared with the 

Split-Step Fourier Method. 

 

Figure 4: Global relative L² error vs epochs 

Table 4 – Global error metrics for all 

numerical experiments. 

Case 

Relati

ve L² 

Error 

Max 

Amplitu

de Error 

(%) 

Phas

e 

Erro

r 

(deg

) 

Energ

y 

Drift 

(%) 

Linear 

Dispersi

on (γ = 

0) 

6.2 × 

10⁻⁴ 
0.3 0.9 0.28 

Soliton 

(β₂ = –1, 

γ = 1) 

1.1 × 

10⁻³ 
0.4 1.2 0.4 

Inverse 

Paramete

r 

Estimati

on 

2.3 × 

10⁻³ 
0.5 1.5 0.5 

The results confirm that the proposed PINN 

not only reproduces classical SSFM results 

but also enables accurate coefficient 

identification using limited measurements. 

Its differentiable formulation allows further 

optimization and sensitivity analysis for 

transmission-line design. 

4.5 Visual Results (Figure Captions 

for Word Insertion) 

The visual results in this section give a full 

comparison between the reference 

numerical simulations and the predictions 

made by the Physics-Informed Neural 

Network (PINN). Each figure is chosen 

with care to show a different part of how the 

model works, such as how the field evolves 

linearly and nonlinearly, how the network 

learns, and how well it converges overall. 

These figures show that the proposed PINN 

framework can accurately and stably 

reproduce the complicated physical 

properties of dispersive and nonlinear 

transmission lines.  Figures 1–4 summarize 

the main results of the study, which include 

forward simulations, soliton preservation, 
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training dynamics, and quantitative 

convergence behavior. They also provide 

clear visual proof of the theoretical and 

numerical results discussed in the previous 

sections. Linear dispersion: a comparison 

of the Physics-Informed Neural Network 

(PINN) and the Split-Step Fourier Method 

(SSFM). The graph shows how the field 

amplitude |ψ(x, t)| changes over time at four 

points (t = 0, 0.5, 1.0, and 2.0). The 

Gaussian pulse gets wider over time 

because the group-velocity-dispersion 

parameter (β₂ = 1) is positive. The PINN 

solution (dashed lines) almost perfectly 

matches the SSFM reference (solid lines). 

This shows that linear dispersive 

reproduction is accurate, with an average 

relative L² error below 10⁻³. Nonlinear 

soliton propagation in a converging 

medium (β₂ = –1, γ = 1).  

We plot the amplitude profiles |ψ(x, t)| at 

different times (t = 0, 0.5, 1.0, 2.0). The 

soliton stays the same shape as it moves, 

which shows the balance between 

dispersion and nonlinearity. This is not the 

same as the dispersive case. The PINN 

accurately keeps the phase and amplitude, 

with an energy error of less than 0.5%. This 

means that it is an upright model of how 

stationary solitons move. The proposed 

PINN model's training loss over time. The 

logarithmic decline of the physics, data, and 

boundary losses is exposed on a graph with 

training epochs on the x-axis. The physics 

term is the most significant at initial 

because it makes sure that PDE is satisfied. 

The data and boundary losses, on the other 

hand, keep convergence stable. Global 

relative L² error compared to training 

epochs for three test cases: linear 

dispersion, nonlinear soliton, and finding 

the inverse parameter. All cases exhibit 

monotonic convergence, with errors 

ranging from 10⁻³ to 10⁻⁴, thereby 

validating robustness. The inverse instance 

takes longer to converge because it needs to 

optimize parameters. 

5. Discussion and Analysis 

The findings clearly demonstrate that the 

planned Physics-Informed Neural Network 

(PINN) is an effective and reliable method 

for resolving the Schrödinger-type 

transmission line equation.  The network 

accurately modeled both the linear 

dispersive behavior, which is characterized 

by gradual pulse broadening, and the 

nonlinear soliton dynamics, in which 

dispersion and nonlinearity stay in perfect 

balance.  The PINN was just as accurate as 

traditional numerical solvers, but it didn't 

need as much training data and didn't need 

to be engaged together. This shows that it 

can work well with points in the spatial-

temporal domain that it was not seen 

before. The model also use sparse 

measurements to figure out unidentified 

parameters of physic like the nonlinear 

coefficient γ and the dispersion coefficient 

β₂.  This showed that it was good for system 

identification and inverse modeling. 

General, the results show that putting limits 

of physic straight into the training 

procedure helps the network to be stable, 

saving of energy, and performance like 

high-frequency transmission lines do in real 

life. 

 

6. Conclusion and Future 

Work 

This article has presented a Physics-

Constrained Neural Network for the 

modeling and solution of the Schrödinger-

type transmission line equation governing 

the high-frequency dispersive and 

nonlinear systems. Using the proposed 
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method, complicated propagation 

behaviors have been successfully captured, 

and accurate reconstruction of field 

distributions and medium parameters has 

been accomplished using scarce data by 

incorporating the available governing 

physics into the loss function. The results 

obtained herein show that PINNs could be 

a reliable alternative to traditional 

numerical solvers and data efficient. They 

can also be used for forward and inverse 

analyses. Further developments will focus 

on extending the model to 

multidimensional domains, integrating 

adaptive sampling and spectral activation 

functions to treat highly oscillatory fields, 

and applying the framework on 

experimental data acquired from optical 

fibers, microwave lines, and other practical 

transmission systems. Only with such 

extensions will the method become even 

more helpful for smart design and 

optimization of advanced communication 

and energy-transfer systems. 
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