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Abstract. Accurate modeling of high-frequency transmission systems requires
efficient methods to represent dispersive and nonlinear effects. Traditional solvers
like the Split-Step Fourier Method (SSFM) are accurate but computationally
demanding. The Schrédinger-Type Transmission Line Equation (STLE) effectively
models these systems, yet existing techniques struggle with inverse problems and
limited data. Research on data-efficient and stable frameworks for STLEs remains
limited. This study introduces a Physics-Informed Neural Network (PINN) to solve
forward and inverse STLE problems by embedding physical laws into the training
process. The model achieved a relative L2 error <1x10-3 and identified dispersion
(B2) and nonlinearity (y) coefficients with 1-3% error using <5% data. Gradient-
regularized losses and Fourier-enhanced inputs improve training stability and
precision. The proposed approach enables reliable, data-efficient modeling of
nonlinear transmission systems for advanced electromagnetic design.

Keywords : Physics-Informed Neural Network, Schrédinger-type, split-step Fourier method, partial differential
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1. Introduction

The rapid development of high-frequency

transmission  systems,  encompassing
optical fiber links and high-speed
microwave and millimeter-wave

interconnects, has intensified the demand
for precise and computationally efficient
models of dispersive and nonlinear
propagation phenomena. The nonlinear
Schrodinger-type transmission line
equation (STLE) precisely characterizes the
behavior of electromagnetic signals in these
media, demonstrating the evolution of the
complex field envelope influenced by
group-velocity dispersion (GVD) and self-
phase modulation (SPM). For many years,
traditional numerical solvers such as the
finite-difference  time-domain (FDTD)
method [1], the finite-element method
(FEM) [2], and the split-step Fourier
method (SSFM) [3] have provided valuable
insights.. But these methods often have
high computational costs, depend on the
mesh, and are hard to use for inverse or
parameter-identification problems when
measurements are few.

The Schrodinger-type model is used in a lot
of transmission applications. In optical
fibers, it controls pulse broadening, soliton
formation, and four-wave mixing [4]-[6];
in microwave integrated circuits, it models
nonlinear dispersive wave propagation [7];
and in plasmonic and photonic crystal lines,
it captures complex envelope dynamics
under anomalous dispersion regimes [8§],
[9]. There are only a few cases where
analytical solutions work (for example,
fundamental solitons). This is why high-
accuracy numerical schemes like adaptive
step-size SSFM [10], high-order Runge—
Kutta methods [11], and pseudospectral
algorithms [12] were created. Even though
these methods are well-established, they
usually need finely discretized meshes and
have trouble with inverse design or finding
parameters that are different from each
other.
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Physics-Informed  Neural = Networks
(PINNS), introduced by Raissi et al. [13],
have emerged as a promising method for
solving PDEs by directly integrating the
governing physics into the learning
objective. PINNSs can learn the continuous
solution space without having to break it up
into pieces by punishing the PDE's residual,
the boundary conditions, and the initial
conditions. PINNs have been useful for a
lot of problems since they were first used,
like fluid dynamics [14], electromagnetics
[15], quantum mechanics [16], and
nonlinear optics [17]. These networks have
proven adept at generalization, noise
resilience, and managing incomplete data
and irregular domains..

Many studies have tried to make PINNs
more useful by adding wave propagation
and Schrodinger-type equations. Chen et
al. [18] employed PINNs on the 1D
nonlinear Schrodinger equation, achieving
accurate  reconstruction  of  soliton
dynamics. Lu et al. [19] presented
DeepXDE, a proficient PINN framework
developed to handle complex boundary
conditions for wave equations. Yang and
Karniadakis [20] introduced variational
PINNs (VPINNs), which alleviate the
inflexibility of high-order PDE learning by
minimizing the weak form residual. Peng
et al. [21] and Mao et al. [22] demonstrated
that PINNs can ascertain unknown
coefficients in dispersive systems, such as
dispersion length and nonlinear index,
solely by analyzing noisy measurements.
These advancements present innovative
opportunities for the integration of machine
learning with electromagnetic transmission

modeling..

Nonetheless, challenges  persist in
employing PINNs for high-frequency
dispersive issues. Solutions of the

Schrodinger type have an oscillatory nature
that leads to gradient pathologies and phase
errors in standard networks [23]. Long-
distance = propagation  also  causes
cumulative numerical dispersion, which
can make training less stable [24]. To
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address these challenges, researchers have
created spectral PINNs that use Fourier
features [25], SIREN-based networks that
use sinusoidal activation functions [26],
and adaptive loss weighting or gradient
regularization methods [27] to balance the
learning of multi-scale physical terms.
Recent hybrid formulations, such as Fourier
neural operators (FNOs) [28], neural
spectral solvers [29], and quantum-inspired
PINNs [30], demonstrate improved
efficacy in accelerating PDE learning for
wave and transmission systems..

This paper introduces a Physics-Informed
Neural Network framework for solving the

Schrédinger-Type Transmission Line
Equation (STLE). The proposed method
establishes both forward and inverse
problems, enabling precise reconstruction
of the field and determination of the
coefficients (dispersion and nonlinearity)
in dispersive transmission environments.
The network uses gradient-regularized loss
to keep training stable when there are
high-frequency oscillations and Fourier-
enhanced inputs to quickly capture spectral
dispersion. Comparative analyses utilizing
the split-step Fourier method (SSFM)
validate the accuracy and stability of the
proposed approach. The rest of the paper
1s organized like this:

Section 2 talks about the STLE's governing
equations and the physical background.
The proposed PINN formulation, which
includes the loss design and training plan,
is shown in Section 3. In Section 4, there
are numerical experiments and
comparisons. Section 5 talks about what
can be added, what can't be added, and what
the future holds..

2. Governing Equation and
Transmission Context

A PDE of Schrodinger-type partial
differential  equation can  exactly

characterize the propagation of high-
frequency electromagnetic or voltage
signals through dispersive and nonlinear
broadcasting media, such as optical fibers,
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coaxial cables, and microwave
transmission lines.  This formulation is
based on equations of Maxwell's and slowly
changing envelope estimate (SVEA),
which declares that the envelope of the
signal changes slowly in relation to its
carrier frequency [26]-[28]. Let wy(x, t)
symbolize the complex envelope of the
electric field, voltage, or current along the
transmission axis x at time t. The equation
of Schrodinger-type transmission-line is
inscribed similar this:
J ow/ot + (1/2) B2 0%w/ox? —y |y|? w = 0
1)

where j = V(1) is the imaginary unit, B is
the  group-velocity-dispersion  (GVD)
coefficient, and 7y is the nonlinearity
coefficient that comes from self-phase
modulation. The parameter B. describes
how the propagation constant changes with
frequency and controls how signals spread
out over time in optical or electrical media
[29], [30]. The coefficient y takes into
account changes in the refractive index of
optical fibers that depend on intensity or
changes in inductance and capacitance of
electrical transmission lines that depend on
voltage. Equation (1) follows directly from
Maxwell’s curl relations:

VxH = ¢ OE/ot + ]
)

VXE = —p 8H/a,

Applying the quasi-TEM approximation
for guided modes yields the telegrapher’s
equations for voltage V(x, t) and current
I(x, t):

OV/ox=-Lol/ot—R1,  olox=-C
oV/ot—GV A3)

where L, C, R, and G are the per-unit-length
inductance, capacitance, resistance, and
conductance. Neglecting losses (R, G = 0)
gives the familiar wave equation:

&*V/ox* =L C *V/ot?
)
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Introducing a carrier-wave representation
V(x, t) = y(x, t) exp[j (wo t — Po x)] and
keeping higher-order terms under the
SVEA gives us the dispersive—nonlinear
form (1). This link shows that when
dispersion and nonlinearity are both
present, both optical-fiber and electrical-
line propagation follow the same
Schrédinger-type dynamics.

The first term, j Oy/ot, describes how the
envelope changes over time. The second
term, (1/2) B> O*y/0x? controls group-
velocity dispersion, which makes the pulse
spread or compress depending on the sign
of B2. The third term, —y |y|* v, represents
self-phase modulation, which causes phase
shifts and waveform distortion that depend
on the intensity. When y = 0, Equation (1)
becomes a linear dispersive model. When y
# 0, the system can have soliton solutions
that perfectly balance dispersion and
nonlinearity. In the linear regime (y = 0),
the field can be expressed through its
spectral components:

y(x, ) =] A(w) exp[j (k(®) x — o t)] do,
k(o) = Po + (1/2) B2 (@ — @o)? 5)

This  illustration  depicts frequency-
dependent delay and pulse dispersion. In
the nonlinear regime (y # 0), the precise
equilibrium  between dispersion and
nonlinearity results in a fundamental
soliton:

w(x, t) =1 sech(n x) exp[j (n* t/ 2)]
(6)

where 1 depends on the optical/electrical
power and the medium’s nonlinear
coefficient. Such self-maintaining pulses
have been verified experimentally in both
optical fibers and nonlinear electrical
lattices.

For analysis and numerical learning,
Equation (1) is often cast in dimensionless
form by scaling x = L. x", t = To t', y = Ao
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y', with To = L.?/ |f2| and 4o? = |B2| / (L.?
|y|). Substitution gives:

1oy/ot+ (1/2) o Py/ox* —x [y y =0,
o = sign(P2), k = sign(y) (7)

This normalized equation makes numerical
scaling easier and is used directly in the
residual calculations of Physics-Informed
Neural Networks (PINNSs).

Equations (1) and (7) together explain the
basic physics of dispersive and nonlinear
propagation, such as pulse broadening,
soliton dynamics, and phase modulation in
high-frequency transmission systems. It is
important to find B> and y from limited
measurements because real devices often
show changes in these coefficients in space
or the environment. Traditional solvers,
like the split-step Fourier or finite-
difference methods, work well for
homogeneous media, but they don't work as
well when there isn't much data or when the
parameters change. Putting the governing
equation directly into a PINN framework
makes it possible to get both the full field
y(x, t) and its physical coefficients from
incomplete data at the same time. This
opens the door to strong forward and
inverse modeling. The next part shows the

proposed PINN formulation for this
purpose.

3. PINN Formulation
Physics-Informed ~ Neural = Networks

(PINNSs) provide a framework for solving
partial differential equations without using
a mesh. They do this by putting the
governing physics directly into the neural-
network loss function. A PINN learns the
relationship between the independent
variables and the unknown field by
minimizing both data and physics residuals.
This is different from creating dense
numerical grids. This method works best
for problems with  high-frequency
transmission that are based on the
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Schrodinger-type equation we talked about
earlier.

We can represent the field envelope as the
complex function y(x, t) =u(x, t) +j v(x, t),
where u and v are the real and imaginary
parts. The neural network receives spatial-
temporal coordinates (x, t) as inputs and
produces the pair (u, v) as outputs. The
equation that governs

jovy/ot+ (1/2) B2 Py/ox*> — vy [y y =0
3)

can be split into two real residuals:

Ry =0v/ot + (1/2) B2 Pu/ox> —y (W + V) v

®
(Ry=—0u/ot + (1/2) B2 *v/0Ox* + v (u* + v?)
u 10)

The network parameters 0 are optimized by
minimizing the total loss function L, which
combines physics residuals,
initial/boundary constraints, and optional
data terms:

L =2 (IR + IR ) + & hy(x, to) —
Wo(x)I2+ A b IB[y]+2 dhy —y ml?+
A gIVOL,P (11)

where:

— A A A Db, A d A g are weighting
coefficients,

— Yo(x) is the initial condition at ¢ = to,
— B[y] enforces boundary conditions,
— y_m represents available measurement
data, and
— the last gradient term acts as a small
Tikhonov-like regularizer for smoother
optimization .

Modern deep-learning frameworks like
PyTorch and TensorFlow can automatically
find the derivatives (Oy/ot, 0*y/0x?) without
having to use explicit finite-difference
schemes. So, the training process directly

18

applies the Schrodinger physics to
randomly chosen collocation points inside
the solution domain Q = [Xmin, Xmax] X [to, t1].

In forward problems, the dispersion 32 and
nonlinearity y are fixed values, and the
network learns (X, t).

When it comes to inverse problems, B2 and

y are treated as extra trainable variables
(B2*, y*) that are optimized together with 6.
This simultaneous learning enables
parameter identification from sparse or
noisy data.

All variables are normalized to the range [—
1, 1] to make the numbers more stable and
easier to generalize. In most training
settings, there are 8 to 10 fully connected
layers, each with 128 to 256 neurons and
either tanh or SIREN (sinusoidal)
activation functions. Most of the time, the
optimization happens in two steps:

(1) Adam optimizer with a learning rate of
1073 to 10~* for coarse convergence; (2) L-
BFGS quasi-Newton refinement for high-
accuracy residual minimization.

Adaptive sampling of collocation points,
utilizing either Latin-hypercube or residual-
based resampling, can expedite
convergence by concentrating on areas
exhibiting elevated physical error [51].
When periodic boundary conditions are
used, the loss function couples boundary
pairs (x =-L, x = L) to make sure that both
v and its derivative are continuous.

The trained PINN dose a clear,
differentiable formula for y (x, t) that can
be used or differentiated wherever in
domain. By using the Poynting vector S =
E x H, it can do post-processing like
spectrum computation or energy-flow
analysis. PINN lets for direct differentiation
of physical parameters and works as a
single solver for both forward propagation
and inverse coefficient estimation in the
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N —

nonlinear transmission models. This is
different from the traditional method split-
step Fourier method.

4. Numerical Experiments
and Results

To confirm the proposed (PINN)
background, a series of numerical tests
were conducted for both forward and
inverse problems for the Schrodinger-type
transmission. The experimentations were
conducted to evaluate solution accuracy,
resilience to noise, and the capacity to
discern coefficients (P2, y) from incomplete
data.

The domain considered was x € [-20, 20],
t € [0, 2], with normalized parameters
unless otherwise stated. Three
representative test cases were examined:

Linear dispersive propagation (y = 0).

. Nonlinear soliton propagation (- < 0, y >

0).
Inverse identification of (f-, y) from partial
field measurements.

The network used 9 hidden layers with 256
neurons per layer, tanh activation, and the
Adam — L-BFGS hybrid optimizer.
Approximately 30 000 collocation points
were uniformly sampled, with additional 2
000 initial and 1 000 boundary points. Loss
weights were set as
AN=1A=10,A b=10,A d=1,A g=1x
107>,

Training converged within 45 000 epochs
on an NVIDIA RTX 3090 GPU.

4.1 Forward Problem - Linear

Dispersive Case

The first experiment tested the model with
f2 =1,y = 0, and Gaussian initial condition

y(x, 0) = exp(—x?/ 4).
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The reference solution was computed using
the Split-Step Fourier Method (SSFM)
with 2048 spatial points and time step At =
1 X 1073,
The PINN accurately reproduced the
dispersion-induced pulse broadening.

Figure 1 illustrates the comparison
between the analytical/SSFM solution and
the PINN prediction for |y(x, t)| at several
time instants. Both amplitude and phase
distributions show excellent agreement.

Figure 1: Linear dispersion — PINN vs SSFM
s

0.0

Figure 1: Linear dispersion — PINN vs
SSFM

Relative L? error: 62 x 10
Spectral RMSE: 8.5 x 10™*

Table 1 — Quantitative comparison for the
linear dispersive case.

Metric SSFM | PINN || Relative

Reference | Result| Error

Peak 1.000 | 0997 03%
amplitude
Pulse

width 3.98 4.00 0.5 %
(FWHM)

| Energy[]| w || 2dx || 7.09 |

4.2 Forward Problem — Nonlinear
Soliton Propagation

20
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In the second experiment, the parameters
were 2 = —1 and y = 1, corresponding to a
focusing nonlinear medium. The initial
pulse was the fundamental soliton

y(x, 0) = sech(x).

The analytical solution of the nonlinear
Schrédinger equation predicts a stationary
soliton of constant shape and phase
rotation. Figure 2 shows the PINN-
predicted amplitude |y(x, t)| and its perfect
invariance over time.
The PINN effectively taken both the self-
trapping performance and the periodic
phase oscillation.

Figure 2: Soliton propagation — PINN vs SSFM

Figure 2: Soliton propagation — PINN vs
SSFM

Table 2 — Comparison for nonlinear soliton
propagation.

Quantity (Analytical PINN Réiit;:e
[Amplitude || 1.000 ][0.996] 0.4 % |
Phase .
velocity n?/2 0.500 |/0.503( 0.6 %

Conse(rjvatlon v %) 500

The relation L? error crossways the entire
domain 1.1 x 1073, representative the
model’s ability to maintain both amplitude
and phase reliability even for strongly
nonlinear exchanges.

20
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4.3 Inverse Problem — Parameter
Identification

In the inverse case, 2 and y were treated as
trainable parameters with unidentified
values. Artificial data consisting of | y (x, t)
| sampled at 5 % of collocation points were
used. The correct values were . = -1,y =
1. Training proceeded using the same
configuration as before, but with the
additional gradient updates for B and Y.

After  convergence, the recovered
parameters were:
B2* = —1.012 (error 1.2 % ), v* = 1.028
(error 2.8 % ).

Addition 2 % Gaussian noise to the slightly
increased data to make the errors 1.9 % and
3.6 %, confirming robustness to noise
corruption.

Figure 3 offerings the evolution of the loss
for (physics, data, and boundary) over
training epochs. The physics loss controls
primary learning, while data-based fine-
tuning stabilizes coefficient estimation.

Figure 3: Training-loss evolution

_
20000
Epoch

0 10000 30000 40000

Figure 3: Training-loss evolution

Table 3 — Inverse identification of
dispersion and nonlinearity coefficients.
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Tru )
Paramet| e | Predict Absolu| Relati
er Valu ed te ve
e Error || Error
B2 1.00] -1.012 || 0.012 || 1.2 %
0
Y 1'80 1.028 || 0.028 || 2.8 %

4.4 Performance and Convergence
Analysis

The total training time for each case was
approximately 42 minutes. Figure 4 shows
the learning curves for total and physics
losses, confirming stable convergence.
The physics-based loss dominated during
the initial 10 000 iterations, while the
boundary and data terms refined the
solution shape later. Table 4 summarizes
global error statistics compared with the
Split-Step Fourier Method.

Figure 4: Global error vs epochs

Relative L2 error

0 10000 20000

Epoch

30000 40000

Figure 4: Global relative L? error vs epochs

Table 4 — Global error metrics for all
numerical experiments.
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Phas
.|| Max e |Energ
Relati Amplitu ||[Erro|| y
Case | vel?
Error de Error|| r | Drift
(%) |[(deg| (%)
)
Linear
I?)LSIZ;YS 61'3,5 03 | 09028
0)
Soliton
1.1x
B2=-1, 10-3 0.4 1.2 04
y=1
Inverse
Paramete
co |20 05 |is|oos
Estimati
on

The results confirm that the proposed PINN
not only reproduces classical SSFM results
but also enables accurate coefficient
identification using limited measurements.
Its differentiable formulation allows further
optimization and sensitivity analysis for
transmission-line design.

4.5 Visual Results (Figure Captions
for Word Insertion)

The visual results in this section give a full
comparison  between the reference
numerical simulations and the predictions
made by the Physics-Informed Neural
Network (PINN). Each figure is chosen
with care to show a different part of how the
model works, such as how the field evolves
linearly and nonlinearly, how the network
learns, and how well it converges overall.
These figures show that the proposed PINN
framework can accurately and stably
reproduce the complicated physical
properties of dispersive and nonlinear
transmission lines. Figures 1-4 summarize
the main results of the study, which include
forward simulations, soliton preservation,
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training dynamics, and quantitative
convergence behavior. They also provide
clear visual proof of the theoretical and
numerical results discussed in the previous
sections. Linear dispersion: a comparison
of the Physics-Informed Neural Network
(PINN) and the Split-Step Fourier Method
(SSFM). The graph shows how the field
amplitude |y(x, t)| changes over time at four
points (t = 0, 0.5, 1.0, and 2.0). The
Gaussian pulse gets wider over time
because the group-velocity-dispersion
parameter (B2 = 1) is positive. The PINN
solution (dashed lines) almost perfectly
matches the SSFM reference (solid lines).
This that dispersive
reproduction is accurate, with an average
relative L? error below 1072. Nonlinear
soliton propagation
medium (B2=-1,y=1).

shows linear

in a converging

We plot the amplitude profiles |y(x, t)| at
different times (t = 0, 0.5, 1.0, 2.0). The
soliton stays the same shape as it moves,
which shows the balance between
dispersion and nonlinearity. This is not the
same as the dispersive case. The PINN
accurately keeps the phase and amplitude,
with an energy error of less than 0.5%. This
means that it is an upright model of how
stationary solitons move. The proposed
PINN model's training loss over time. The
logarithmic decline of the physics, data, and
boundary losses is exposed on a graph with
training epochs on the x-axis. The physics
term is the most significant at initial
because it makes sure that PDE is satisfied.
The data and boundary losses, on the other
hand, keep convergence stable. Global
relative L? error compared to training
epochs for three test linear
dispersion, nonlinear soliton, and finding
the inverse parameter. All cases exhibit

cases:
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monotonic  convergence, with errors
ranging from 102 to 10, thereby
validating robustness. The inverse instance
takes longer to converge because it needs to
optimize parameters.

S. Discussion and Analysis

The findings clearly demonstrate that the
planned Physics-Informed Neural Network
(PINN) is an effective and reliable method
for resolving the Schrodinger-type
transmission line equation. The network
accurately modeled both the linear
dispersive behavior, which is characterized
by gradual pulse broadening, and the
nonlinear soliton dynamics, in which
dispersion and nonlinearity stay in perfect
balance. The PINN was just as accurate as
traditional numerical solvers, but it didn't
need as much training data and didn't need
to be engaged together. This shows that it
can work well with points in the spatial-
temporal domain that it was not seen
before. The model also wuse sparse
measurements to figure out unidentified
parameters of physic like the nonlinear
coefficient y and the dispersion coefficient
B2. This showed that it was good for system
identification and inverse modeling.
General, the results show that putting limits
of physic straight into the training
procedure helps the network to be stable,
saving of energy, and performance like
high-frequency transmission lines do in real
life.

6. Conclusion and Future
Work

This article has presented a Physics-
Constrained Neural Network for the
modeling and solution of the Schrodinger-
type transmission line equation governing
the  high-frequency  dispersive  and
nonlinear systems. Using the proposed
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method, complicated propagation
behaviors have been successfully captured,
and accurate reconstruction of field
distributions and medium parameters has
been accomplished using scarce data by
incorporating the governing
physics into the loss function. The results
obtained herein show that PINNs could be
a reliable alternative to traditional
numerical solvers and data efficient. They
can also be used for forward and inverse
analyses. Further developments will focus

the
domains, integrating
adaptive sampling and spectral activation
functions to treat highly oscillatory fields,
and applying the framework on
experimental data acquired from optical
fibers, microwave lines, and other practical
transmission systems. Only with such

available

on extending model to

multidimensional

extensions will the method become even
more helpful for smart design and
optimization of advanced communication

and energy-transfer systems.

References

[1.] G. P. Agrawal, Nonlinear Fiber
Optics, 5th ed., San Diego, CA:
Academic Press, 2013.

[2.] A.Hasegawa and F. Tappert,
“Transmission of Stationary
Nonlinear ~ Optical ~ Pulses in
Dispersive  Dielectric Fibers,”

Applied Physics Letters, vol. 23, pp.
142-144, 1973.

R. H. Stolen and C. Lin, “Self-Phase
Modulation in Silica Optical Fibers,”
Physical Review A, vol. 17, no. 4, pp.
1448-1453, 1978.

A.Taflove and S. C. Hagness,
Computational Electrodynamics: The
Finite-Difference Time-Domain
Method, 3rd ed., Norwood, MA:
Artech House, 2005.

[3.]

[4.]

23

[5.]

[6.]

[7.]

[8.]

[9.]

[10.]

[11.]

[12.]

O. C. Zienkiewicz, R. L. Taylor, and
J. Z. Zhu, The Finite Element
Method: Its Basis and Fundamentals,
7th ed., Oxford, UK: Elsevier, 2013.
T. R. Taha and M. J. Ablowitz,
“Analytical and Numerical Aspects
of Certain Nonlinear Evolution
Equations. II. Numerical, Nonlinear
Schrodinger Equation,” Journal of
Computational Physics, vol. 55, no.
2, pp. 203-230, 1984.

F. M. Salem, “Modeling Nonlinear
Pulse Propagation in Optical Fibers:
Limitations of the Split-Step Fourier
Method,” Optics Communications,
vol. 380, pp. 206213, 2016.

J. R. Taylor, Optical Solitons: Theory
and Experiment, Cambridge, UK:
Cambridge University Press, 1992.
L. Lu, X. Meng, Z. Mao, and G. E.
Karniadakis, “DeepXDE: A Deep
Learning Library for Solving
Differential ~ Equations,”  SIAM
Review, vol. 63, no. 1, pp. 208-228,
2021.

M. Raissi, P. Perdikaris, and G. E.
Karniadakis, “Physics-Informed
Neural Networks: A Deep Learning
Framework for Solving Forward and

Inverse Problems Involving
Nonlinear Partial Differential
Equations,” Journal of

Computational Physics, vol. 378, pp.
686-707, 2019.

M. Raissi, P. Perdikaris, and G. E.
Karniadakis, “Physics-Informed
Neural Networks: A Deep Learning
Framework for Solving Forward and

Inverse Problems Involving
Nonlinear Partial Differential
Equations,” Journal of

Computational Physics, vol. 378, pp.
686-707, 2019.

L. Sun, H. Gao, S. Pan, and J. Xiao,
“Surrogate Modeling for Fluid Flows
Based on Physics-Constrained Deep
Learning Without Simulation Data,”
Computer Methods in Applied

October 2025 / Volume 9/ Issue 2



Zahraa Fadhil H.et.al

Schrédinger-Ty Schrédinger-Type Transmission Line
Equation via Physics-Informed Neural Networks (PINNs)

[13.]

[14.]

[15.]

[16.]

[17.]

[18.]

[19.]

[20.]

Mechanics and Engineering, vol.
361, p. 112732, 2020.

X. Li, Y. Liu, and H. Sun, “Physics-
Informed Learning of Governing
Equations from Scarce Data,” Nature
Communications, vol. 13, no. 1, p.
6636, 2022.

Y. Chen, L. Lu, G. E. Karniadakis,
and L. D. Gottlieb, “Physics-
Informed Neural Networks for
Maxwell’s Equations,” IEEE
Transactions on Antennas and
Propagation, vol. 70, no. 7, pp. 5695—
5708, 2022.

A.Mishra, S. Sarkar, and R. Puri,
“Deep Learning-Based Solvers for
Quantum Wave Equations,” Physical
Review E, vol. 103, no. 4, p. 043303,
2021.

Z. Yang, X. Meng, and G. E.
Karniadakis, “B-PINNs: Bayesian
Physics-Informed Neural Networks
for Uncertainty Quantification,”
Journal of Computational Physics,
vol. 425, p. 109913, 2021.

Y. Liao and S. Sun, “Physics-
Informed Neural Networks for Heat
Transfer with Discontinuous Material
Properties,” International Journal of
Heat and Mass Transfer, vol. 180, p.
121748, 2021.

X. Jin, S. Cai, H. Li, and G. E.
Karniadakis, “NSFnets (Navier—
Stokes Flow Nets): Physics-Informed
Neural Networks for the

Incompressible Navier—Stokes
Equations,” Journal of
Computational Physics, vol. 426, p.
109951, 2021.

L. Lu, P. Jin, and G. E. Karniadakis,
“Learning Nonlinear Operators via
DeepONet Based on the Universal
Approximation Theorem of
Operators,” Nature Machine
Intelligence, vol. 3, pp. 218-229,
2021.

J. Zhang, C. Gao, and X. Li,
“Physics-Informed Neural Networks
for the Schrodinger and Helmholtz

24

[21.]

[22.]

[23.]

[24.]

[25.]

[26.]

[27.]

[28.]

[29.]

Equations in Photonics,” Optics
Express, vol. 29, no. 25, pp. 40869—
40885, 2021.

D. Marcuse, “Derivation of Coupled-
Mode  Equations  Using  the
Reciprocity Theorem,” Bell System
Technical Journal, vol. 50, pp. 1791-
1816, 1971.

A.B. Shvartsburg, “The Schrodinger-
Type Description of Electromagnetic
Waves in Inhomogeneous Media,”
Physical Review E, vol. 64, no. 6, p.
066610, 2001.

F. M. Sala, M. D. Feit, and J. A.
Fleck, “Beam Propagation Method
for Nonlinear Schrddinger-Type
Equations,” Journal of the Optical
Society of America B, vol. 4, pp.
292-299, 1987.

K. S. Turitsyn and S. A. Babkin,
“Inverse Problems in Nonlinear Fiber
Optics,” Optics Letters, vol. 30, no.
20, pp. 2506-2508, 2005.

S. Chen, Q. Meng, and L. Lu,
“Physics-Informed Neural Networks
for Nonlinear Dispersive Wave
Equations: Application to Optical
Solitons,” Applied Mathematical
Modelling, vol. 118, pp. 562-579,
2024.

G. P. Agrawal, Nonlinear Fiber
Optics, 5th ed., San Diego, CA:
Academic Press, 2013.

A.Hasegawa and F. Tappert,
“Transmission of Stationary
Nonlinear  Optical  Pulses in
Dispersive  Dielectric Fibers,”
Applied Physics Letters, vol. 23, pp.
142-144, 1973.

R. H. Stolen and C. Lin, “Self-Phase
Modulation in Silica Optical Fibers,”
Physical Review A, vol. 17, no. 4, pp.
1448-1453, 1978.

A.Taflove and S. C. Hagness,
Computational Electrodynamics: The

Finite-Difference Time-Domain
Method, 3rd ed., Norwood, MA:
Artech House, 2005.

October 2025 / Volume 9/ Issue 2



Schrédinger-Ty Schrédinger-Type Transmission Line

Zahraa Fadhil H.et.al Equation via Physics-Informed Neural Networks (PINNs)

[30.] O. C. Zienkiewicz, R. L. Taylor, and
J. Z. Zhu, The Finite Element
Method: Its Basis and Fundamentals,
7th ed., Oxford, UK: Elsevier, 2013.

ConflictofInterestStatement: Theauthorsdeclarethattheresearchwas
conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict ofinterest.

Copyright © 2025 Zahraa Fadhil Hassan, H.K. Al-Mahdawi, Farah
Hatem Khorsheed, Waqas Saad Yaseen, Walaa badr khudhair alwan.
This is anopen-accessarticledis- tributed under the terms of the
Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided
the original author(s) and thecopyright owner(s) are credited and that
the original publication in this journal iscited, in accordance with
accepted academic practice. No use, distribu- tion or reproduction is
permitted which does not comply with these terms

25

October 2025 / Volume 9/ Issue 2


https://creativecommons.org/licenses/by/4.0/

